Label-Free Digital Quantification of Lipid Droplets in Single Cells by Stimulated Raman Microscopy on a Microfluidic Platform.

نویسندگان

  • Chen Cao
  • Dong Zhou
  • Tao Chen
  • Aaron M Streets
  • Yanyi Huang
چکیده

Quantitative characterization of a single-cell phenotype remains challenging. We combined a scalable microfluidic array of parallel cell culture chambers and stimulated Raman scattering (SRS) microscopy to quantitatively characterize the response of lipid droplet (LD) formation to free-fatty-acid stimuli with single-LD resolution at the single-cell level. By enabling the systematic live-cell imaging with SRS microscopy in a microfluidic device, we were able to quantify the morphology of over a thousand live cells in 10 different chemical environments and with 8 replicates for each culture condition, in a single experiment, and without relying on fluorescent labeling. We developed an image processing pipeline for cell segmentation and LD morphology quantification using dual-channel SRS images. This allows us to construct distributions of the morphological parameters of LDs in the cellular population and expose the vast phenotypic heterogeneity among genetically similar cells. Specifically, this approach provides an analytical tool for quantitatively investigating LD morphology in live cells in situ. With this high-throughput, high-resolution, and label-free method, we found that LD growth dynamics showed considerable cell to cell variation. Lipid accumulation in nonadipocyte cells is mainly reflected in the increase of LD number, as opposed to an increase in their size or lipid concentration. Our method allows statistical single-cell quantification of the LD distribution for further investigation of lipid metabolism and dynamic behavior, and also extends the possibility to couple with other "omics" technologies in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy.

Lipid droplets are complex organelles that exhibit highly dynamic behavior in early Drosophila embryo development. Imaging lipid droplet motion provides a robust platform for the investigation of shuttling by kinesin and dynein motors, but methods for imaging are either destructive or deficient in resolution and penetration to study large populations of droplets in an individual embryo. Here we...

متن کامل

Microsecond Scale Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy.

Real-time vibrational spectroscopic imaging is desired for monitoring cellular states and cellular processes in a label-free manner. Raman spectroscopic imaging of highly dynamic systems is inhibited by relatively slow spectral acquisition on millisecond to second scale. Here, we report microsecond scale vibrational spectroscopic imaging by lock-in free parallel detection of spectrally disperse...

متن کامل

Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator.

Stimulated Raman scattering (SRS) microscopy allows label-free chemical imaging based on vibrational spectroscopy. Narrowband excitation with picosecond lasers creates the highest signal levels and enables imaging speeds up to video-rate, but it sacrifices chemical specificity in samples with overlapping bands compared to broadband (multiplex) excitation. We develop a rapidly tunable picosecond...

متن کامل

Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy.

Lipid droplets (LDs) are highly dynamic organelles that perform multiple functions, including the regulated storage and release of cholesterol and fatty acids. Information on the molecular composition of individual LDs within their cellular context is crucial in understanding the diverse biological functions of LDs, as well as their involvement in the development of metabolic disorders such as ...

متن کامل

Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging.

Dysregulation of lipid metabolism is associated with many diseases including cancer. Lipid droplet (LD), a ubiquitous organelle in mammalian cells, serves as a hub for lipid metabolism. Conventional assays on the measurement of lipid metabolism rely on the quantification of the lipid composition or amount. Such methods cannot distinguish LDs having different biofunctionalities in living cells, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 88 9  شماره 

صفحات  -

تاریخ انتشار 2016